(3x^2)-36=(2x^2)-5x

Simple and best practice solution for (3x^2)-36=(2x^2)-5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2)-36=(2x^2)-5x equation:



(3x^2)-36=(2x^2)-5x
We move all terms to the left:
(3x^2)-36-((2x^2)-5x)=0
We get rid of parentheses
3x^2-2x^2+5x-36=0
We add all the numbers together, and all the variables
x^2+5x-36=0
a = 1; b = 5; c = -36;
Δ = b2-4ac
Δ = 52-4·1·(-36)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-13}{2*1}=\frac{-18}{2} =-9 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+13}{2*1}=\frac{8}{2} =4 $

See similar equations:

| 10+0,5x=25 | | -7(6-9x)=-2(-4-7)-x | | 13h+27=-3 | | 3x+9+3x+9=9x-3 | | x+x/3+8/3+1=0 | | 3x+9+3x+9=(x-3 | | 2(2x=5)=2(4x-1) | | 0=-5x2x | | -2(x-4)+9(5x=9)=42(x+2)-1 | | -2x+5=8x+3 | | 1/12+1/x=1/5.14 | | 0=-16x^2+107x+36 | | 2(z-5)-(4z-4)=-3z | | 22-6g=19 | | 0.6=1+x+0.1 | | 6x=27+6x | | 5x+5+5+10=-25+x | | 5c-10=14c-19 | | 3^x=4.52 | | 6+2(5v+2)=-6(-2v+3) | | m–425=113 | | 8=8u-6u | | 3(k-9)-(6-2k)=4k | | 5p-7=28+5p | | -2x+5=-8x+3 | | 7n=10n-9/4 | | n/7=1-(-8) | | 4x-9=22x-7 | | 38+15x=17x | | 12/2-x/2+3=1 | | x=5x-335+7 | | u+10=60 |

Equations solver categories